skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Phoebe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Breathing in fine particulate matter of diameter less than 2.5 µm (PM2.5) greatly increases an individual’s risk of cardiovascular and respiratory diseases. As climate change progresses, extreme weather events, including wildfires, are expected to increase, exacerbating air pollution. However, models often struggle to capture extreme pollution events due to the rarity of high PM2.5 levels in training datasets. To address this, we implemented cluster-based undersampling and trained Transformer models to improve extreme event prediction using various cutoff thresholds (12.1 µg/m3 and 35.5 µg/m3) and partial sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the 35.5 µg/m3 threshold, paired with a 20/80 partial sampling ratio, achieved the best performance, with an RMSE of 2.080, MAE of 1.386, and R2 of 0.914, particularly excelling in forecasting high PM2.5 events. Overall, models trained on augmented data significantly outperformed those trained on original data, highlighting the importance of resampling techniques in improving air quality forecasting accuracy, especially for high-pollution scenarios. These findings provide critical insights into optimizing air quality forecasting models, enabling more reliable predictions of extreme pollution events. By advancing the ability to forecast high PM2.5 levels, this study contributes to the development of more informed public health and environmental policies to mitigate the impacts of air pollution, and advanced the technology for building better air quality digital twins. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026